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Abstract
This paper discusses some current trends in computational materials science,
especially the striving to forge links between modelling activities at various
length and timescales. At the atomistic scale, methods based on quantum
mechanical, especially density-functional, theories for electronic properties
link to atomic/molecular dynamics and kinetic Monte Carlo simulations.
Coarse graining leads to lattice-gas and cellular automata, and eventually to
continuum equations solved by finite-element and finite-difference techniques.
As examples of hierarchical modelling of materials, the paper describes recent
work on anisotropic chemical etching of silicon, irradiation processing of
fullerenes, oxygen clustering in silicon and self-diffusion in the compound
semiconductor GaSb.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sustainable economies with responsible utilization of natural resources and energy have to be
based on advanced technologies, which, in turn, depend on advances in materials performance
and on developing new materials with new, superior properties.

Modern materials science is a truly interdisciplinary endeavour, based on three
fundamental activities. The manufacture and processing of materials uses the ingredients
provided by the periodic table and naturally existing chemical precursors, together with a
multitude of different physical, chemical and biological techniques, to make different materials
in seemingly infinite varieties. The physical and chemical characterization of materials is made
possible by a huge array of sophisticated techniques, with often atomic-scale resolution and
extreme sensitivity. The modelling and simulation of materials are based on the development
of theories and computational methods, and range from the quantum physics of atomic-scale
phenomena to the continuum descriptions of macroscopic behaviour.
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The realm of materials is vast, ranging from the inorganic world of metallic,
semiconducting and insulating materials to organic polymers as well as biologically relevant
and biomimetic materials and structures. Their physical, chemical and biological properties
vary enormously, from ultrahard solids to soft tissues and DNA strands, from ceramic
superconductors to organic semiconductors, from liquid ferromagnets to amorphous insulators.
The structural variety is unbounded, and can be accessed with sophisticated manipulation and
processing techniques.

The infinite number of possibilities in materials research underscores the importance of
predictive theory and modelling. The community of materials theorists has traditionally been
divided into subcommunities largely defined by the length and timescales of interest to them. In
the macroscopic spatial regime from millimetres to metres, modelling has typically developed
around continuum equations solved by finite-element (FE) and finite-difference techniques. In
the mesoscopic regime from micrometres to millimetres, phenomenological approaches have
developed around stochastic methods for the material’s microstructure such as grain boundaries
and dislocations. In the microscopic, Ångström-scale regime physicists and quantum chemists
have based their work on the Schrödinger equation and other expressions of quantum mechanics
of interacting electrons and atomic nuclei. The rapid increase in computational capabilities, in
terms of both raw computing power and new algorithms, has enabled spectacular developments
in each of these regimes. These entail increased complexity in its various forms: more degrees
of freedom, more complicated boundary conditions and geometries, more nonlinearities, longer
timescales, further away from equilibrium.

The challenge now faced by theorists is to bridge the different length (and time) scales
to a more general framework, which has been coined as multiscale modelling. One should
be able to move, as seamlessly as possible, from one scale to another so that the calculated
parameters, properties and other numerical information calculated can be efficiently transferred
across scales. Although all the information is in principle available at the finest (microscopic)
level on description, it would be mindless and totally impractical to use it for macroscopic
phenomena. At each length scale there are emergent phenomena which are best described
by new, coarse-grained equations, which eliminate the unnecessary detail and emphasize
the emergent properties. The challenge is how to optimally convey the information through
appropriate ‘hand-shaking’ of the different regimes.

In very general terms, one can imagine two different answers to this challenge. In the
concurrent approach one constructs a universal description (e.g. Hamiltonian) valid at all
relevant scales, but so that the redundant degrees of freedom can be efficiently ‘integrated out’
for the actual treatment at one scale. For example, the Newton equations of motion for atomic-
scale entities should be (reversibly) convertible to kinetic equations or lattice-gas automata
(see below) for density and velocity fields. This approach resembles the multigrid techniques
used for partial differential equations or the general renormalization-group idea of statistical
physics. While intellectually most appealing, this approach has not yet been developed into
a general scheme and will not be further discussed here. The reader is referred to interesting
and important recent articles [1, 2].

In the hierarchical approach one carries out the computational simulation at one scale and
extracts such quantities that can be used to define the parameters of the model operative on the
adjoining (usually longer) scale. For example, the energy barriers, vibrational frequencies and
entropies for atomic motion can be calculated at the microscopic level and then transferred to
a kinetic simulation as discrete jump probabilities or as coefficients to reaction-diffusion-type
equations.

The properties of materials and structures made thereof should ultimately be explainable
in terms of their constituent atoms and their mutual interactions, and their motion at finite
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temperatures and under external forces. Below, the basic steps from the microscopic towards
the macroscopic are briefly described, and a few examples from recent research then follow.

2. Hierarchical modelling of materials phenomena

2.1. Atomistic calculations: density-functional theory

Density-functional theory (DFT) [3] is the undisputed workhorse for quantum mechanical
atomistic calculations. DFT transforms the complex many-body problem of interacting
electrons and nuclei into a coupled set of one-particle (Kohn–Sham) equations, which are
computationally much more manageable. The theory allows parameter-free calculations of all
ground-state physical observables, such as charge and spin densities, total energies and many
related quantities, such as bonding distances, elastic moduli, vibrational frequencies, defect
and surface energies, migration barriers, reaction energies, magnetic moments etc. There are
numerous popular implementations of DFT to large-scale calculations of materials properties,
for example those using plane-wave basis functions and pseudopotentials for valence electrons
or those using linearized methods for all-electron calculations. System sizes of up to several
hundred atoms are feasible. While the simple local-(spin-) density approximation (L(S)DA)
is robust and provides often surprising quantitative accuracy, there are also workable methods
beyond L(S)DA which recover aspects of the nonlocal nature of electronic exchange and
correlation interactions. These methods can lead to a numerical accuracy similar that of
full quantum calculations (configuration interactions, coupled cluster, quantum Monte Carlo
(MC)) for small systems. The latter methods are currently computationally too heavy for
large system sizes. However, one should note the important recent development towards a
linear-scaling (‘order-N ’) formulation of the quantum MC method [4]. The static formulation
of DFT enables also ‘first-principles’ molecular dynamics simulations, where the interatomic
forces are calculated for the adiabatic motion of nuclei from the electronic degrees of freedom,
utilizing the Hellmann–Feynman theorem.

The density-functional approach can be generalized to the time-dependent case [5] as
well. In the linear-response regime, such properties as photoabsorption spectra or frequency-
dependent electromagnetic susceptibilities can be attacked. While the construction of the
exchange–correlation functional for time-dependent calculations is still a challenge, the simple
adiabatic local-density approximation (TDLDA), which implies an instantaneous response
dependent only on the local electron density, has turned out to be surprisingly accurate for
many purposes.

The time-dependent formulation also allows an approach to address the question of
excitation energies, for which the ground-state Kohn–Sham eigenvalues often give a poor
estimate. For finite systems such an approach has been shown to be quite accurate [5],
comparable to more laborious quasiparticle ‘self-energy’ methods. In the case of strong
external perturbations, such as laser dissociation of molecules, DFT provides a working scheme
to simulate the full nonlinear response of the combined system of electrons and nuclei.

The numerical solution of the Kohn–Sham equations using real-space (RS) methods [6]
instead of basis sets is currently an active research topic. Real-space grids can offer several
benefits. Firstly, RS methods can in principle be used in both pseudopotential and all-electron
calculations. Secondly, and more importantly in the present context, systems containing
different length scales (e.g. nanostructures, surfaces etc) can be treated economically as one
need not waste many grid points in empty regions. Also different types of boundary condition
(free or periodic) are easily implemented. Finally, RS methods can can be efficiently adapted
to parallel computing through domain decomposition. Multigrid techniques enable substantial
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speedups in the convergence of RS methods, which are now becoming competitive with more
conventional basis-set approaches such as Fourier series (plane-wave methods).

2.2. Moving atoms: molecular dynamics simulations

Within the Born–Oppenheimer (BO) approximation, the total ground-state energy associated
with the electronic degrees of freedom defines the potential energy hypersurface for the atomic
motion, which is classical and controlled by the nuclear masses. Exceptions are the lightest
elements, hydrogen and helium, for which quantum mechanical tunnelling plays a role. The
interatomic forces can be obtained as derivatives of the potential energy hypersurface with re-
spect to nuclear coordinates. The low-lying excitations of the nuclear subsystem are quantized
phonons, which can be accurately addressed by density-functional perturbation theory [7].

At high temperatures, the atomic motion becomes entirely classical. The atomic
excursions from their equilibrium positions increase with increasing temperature. The
motion becomes anharmonic and eventually leads to diffusive motion characterized by
hops over barriers separating equivalent positions in the potential energy landscape. The
atomic motion can be modelled by solving Newton’s equations of motion. This approach
goes under the generic name of molecular dynamics simulations [8], and has become a
popular and powerful way to investigate the complicated, collective processes associated with
atomic motion. Various thermodynamical ensembles (constant total energy—microcanonical,
constant temperature—canonical, constant volume, constant pressure) can be simulated using,
if necessary, auxiliary variables for atomic velocity scaling and unit-cell dimensions.

As molecular dynamics simulation works in ‘real time’, i.e. the computational timestep
(typically less than 10−15 s) is dictated by the physical constants, following a particular physical
event may be painfully slow and require a huge number of computational timesteps. This is
the problem of rare events, such as a thermally activated jump over a migration barrier at
low temperatures, which makes the brute force application of molecular dynamics simulation
unpractical for such cases. Ingenious schemes have been proposed [9] to overcome the rare-
event bottleneck while preserving the deterministic nature of molecular dynamics simulation.

The most direct, parameter-free approach to molecular dynamics simulation is to calculate
the forces from first principles, i.e. by evaluating the electronic total energy and interatomic
forces at each timestep. This can be done either ‘on the fly’ through the Car–Parrinello
algorithm [10] (which updates the electronic and ionic degrees of freedom in unison in the
vicinity of the BO surface) or through direct minimization of the electronic total energy on the
BO surface (adiabatic molecular dynamics).

First-principles molecular dynamics simulations are computationally demanding and still
limited to rather modest system sizes and short time sequences. The accurate evaluation
of the forces also puts stringent requirements on the computational techniques used. Most
of the practical implementations of first-principles molecular dynamics methods use Fourier
techniques (plane-wave basis sets) for the electronic degrees of freedom in conjunction with
pseudopotentials to fold out the inert core-electron states. Plane-wave methods have the
advantage that the spatial resolution is uniform, i.e. independent of the nuclear positions,
which enables accurate force evaluations. Even with the fastest (parallel) algorithms and
computers, the calculations are typically limited to a few hundred electrons and atoms in size
and to a few nanoseconds in length.

The molecular dynamics simulations can be speeded up at the expense of ‘first-principles’
accuracy of the force evaluations. Several schemes utilizing minimal basis sets in the form
of local orbitals in the spirit of the tight-binding approximation have been introduced [11],
with varying degrees of accuracy and portability. The force evaluations in such schemes are
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usually faster than the first-principles methods by at least one order of magnitude. Schemes
utilizing parametrized classical interactions in analytic form are naturally fastest. Such schemes
range from simple pairwise interatomic potentials of insulating solids to angle-dependent
models for covalent solids and to sophisticated many-atom force fields designed for organic
molecules [12].

2.3. Moving atoms: kinetic Monte Carlo methods

Another possible approach to simulating atomic motion is provided by stochastic simulation
by the MC method [13]. The basic idea is very simple. The potential energy hypersurface
is first evaluated for all relevant atomic configurations. These include not only (meta)stable
configurations but also those associated with saddle points. A typical saddle point configuration
is one where an atom is at the transition state, at the barrier separating two nearby valleys in the
hypersurface. A complete mapping of the hypersurface is of course impossible. Thus physical
intuition is needed to divide the atoms into those actively moving during various processes of
interest and those that are mere ‘spectators’ during the events. Identification of the barriers
is a nontrivial task, and algorithms such as the ‘nudged elastic band’ (NEB) [14], the ‘locally
activated Monte Carlo’ (LAMC) [15] or the ‘tossing ropes’ [16] are needed. The relative
probabilities of different atomic movements are proportional to Boltzmann factors involving
the energy differences between the transition state and the initial state.

In the kinetic Monte Carlo (KMC) simulation, one replaces the short-time dynamics of
the system by discrete hops in a network. This is done by mapping the potential energy surface
to a grid, where the grid points are associated with minima in the potential energy landscape.
The possible initial and final states for atomic configurations are classified, typically in terms
of ‘atomic neighbourhoods’, which largely determine the energy of a given configuration. The
number, position and chemical identity of neighbouring atoms are used to define the class of
the configuration.

Given the classified configurations, one defines the transition probability Wfi from an
initial state i to a final state f for all possible transitions between the two. These can include
not only single-atom events but also concerted events, i.e. simultaneous movements of several
atoms. For a event class labelled by k, the transition rate is

�k = W(f, i) = �
f i

0 exp

(
−E

f i

T S − Ei

kBT

)
(1)

where �f i0 is a prefactor, Ef i

T S the total energy in the transition state for process k and Ei

the energy of the initial state. The prefactor depends on entropic factors associated with
the possible vibrational modes, and can be explicitly evaluated within the classical and
harmonic approximation. Thermal equilibrium can be ensured by invoking the detailed-
balance condition.

The KMC simulation is efficiently executed with the Bortz–Kalos–Lebowitz [17]
algorithm. One first evaluates the total rate R by summing �k over all possible processes.
Secondly, three random numbers ρ1, ρ2 and ρ3 are drawn from the interval [0,1]. One of them,
say ρ1, is used to determine the class k for the event chosen:

k∑
j=0

�j � ρ1R �
k−1∑
j=0

�j . (2)

The second random number ρ2 is used to choose a particular event from the class k, and the
third random number ρ3 is used to advance the ‘clock’ through

t = t − ln(ρ3)/R. (3)
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The procedure can obviously be generalized for nonequilibrium dynamics controlled
by arbitrary rate constants. KMC simulations are closely related to lattice-gas and cellular
automaton models [18], where the updating of the local variables (configurations) follows
rules written in terms of the neighbourhoods of each atom. The updating can take place either
sequentially or in parallel. In the continuous cellular automaton scheme, the condition of
discrete occupation numbers (e.g. that an atom either occupies a lattice site (occupation = 1)
or the site is empty (occupation = 0)) is released. A continuous variable ranging from zero to
unity is used to characterize the ‘mass’ or ‘occupation state’ of a lattice site. Starting from a site
initially occupied by an atom, this continuous variable is reduced by an amount corresponding
to its net removal probability. When the continuous variable reaches the value zero, the atom
is definitely removed. This mode of KMC methods is particularly useful in simulations of
surface etching, an example of which is discussed below.

2.4. From molecular dynamics to continuum equations

The coupling of the atomic-scale description of molecular dynamics to mesoscale and
eventually macroscale models is absolutely essential to successful realization of true multiscale
modelling. Let us consider the case of mechanical properties of solids as an example,
including fracture and crack propagation under external load. Even though molecular dynamics
simulations can currently run with hundreds of millions of atoms (with classical potentials),
these calculations cannot properly represent environment of a dynamical system in the meso-
and macroscales. The important issue is the flow of mechanical energy into and out of the
system, rather than the statistical physics of the atomistic assembly (which can be modelled
by a relatively small sample). Much of the important physics is in long-range interactions,
such as the elastic field. Thus it is natural to envisage embedding the molecular-dynamics
region in a continuum mechanical description. Far away from the central region (e.g. the tip of
the propagating crack) the atoms are displaced only slightly from their equilibrium positions,
and (linear) elasticity theory is expected to work well. The FE method [19] is the method of
choice for this region. The FE algorithms for continuum equations are of course much more
efficient computationally than molecular dynamics: only a small number of degrees of freedom
are necessary. In crack propagation, much of the action is focused near the crack faces and
the emitted dislocations. Far away from the crack, little is happening as atoms mainly vibrate
around their equilibrium positions: a mean-field-type description is totally adequate. However,
one cannot dispense with the distant region entirely. Molecular dynamics simulations show that
long-wavelength pressure waves emanate from the crack tip. These waves must be properly
propagated into the surrounding medium, which can only be accomplished by an appropriate
embedding continuum.

The FE equations of motion can be derived straightforwardly from the Hamiltonian for
linear elasticity theory, with the physical parameters contained in the elastic constant tensor C

and the mass matrix M . The crucial issue then is the ‘handshaking’ between the molecular
dynamics region and the embedding FE region. This remains an active area of study, and
several schemes have been proposed [20].

2.5. From kinetic Monte Carlo methods to rate equations

KMC schemes discussed above carry the spatial information defined in terms of discrete
configurations of atoms through which the system evolves as a generalized random-walk
process. This information can easily become overwhelming and difficult to handle and the
number of possible configurations can become unmanageable. Instead of solving the full
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stochastic differential equation (the ‘master equation’), as the KMC methods do, one can
define density fields for a set of relevant configurations, for example spatial densities nk(r)
for atom clusters of size k. These density fields can then be linked with macroscopic mass
currents, as for example in the case of simple chemical diffusion driven by density gradients.
The diffusion current is

J1 = −(Dn1(�r)/kBT )�µ (4)

whereD is the phenomenological diffusion constant andµ the chemical potential. In the dilute
limit

µ = kBT ln(n1(�r)) (5)

which leads to the Schmoluchowski equation and Fick’s law. Combined with the constraint
of mass conservation, the familiar diffusion equation is obtained, and a link between the
microscopic random walk and the macroscopic diffusion model is established. Similarly,
simple rate-reaction equations can be derived for spatially averaged quantities such as average
concentrations of clusters with a given size. A famous example of such rate equations is
Waite’s formulation [21] for diffusion-limited reactions.

3. Anisotropic wet chemical etching of Si

Anisotropic wet chemical etching of silicon and other semiconductor materials is a key process
in microelectronics processing. A typical example is the etching using a KOH solution,
which leads to the removal of silicon atoms from the exposed surface. For smooth single-
crystal surfaces, the etch rate is strongly dependent on the crystalline orientation. As an
important application, the emerging microelectromechanical systems (MEMS) require the
controlled extension of etching techniques from the essentially two-dimensional world of
integrated microelectronic circuit design to three-dimensional structures of various actuators,
sensors and oscillators. Predictive modelling of three-dimensional etching is thus an important
challenge.

We have recently presented [22] a combination of ab initio level (i.e. free of adjustable
parameters) atomic-scale calculations and MC/cellular automaton simulations, which provide
a link between the macroscopic features of etched structures and the microscopic chemical
reactions. In the atomistic model, the removal of a surface atom is controlled by its relative
probability of forming a stable compound with the etchant radical approaching it from the
solution. This probability depends on initial bonding of the surface atom to its neighbourhood
(number of backbonds, nature of highest occupied and lowest unoccupied orbitals etc).
Density-functional calculations can yield detailed information on the variety of possible initial
configurations, reflecting the microscopic anisotropies of the underlying crystalline lattice.
In particular, the relative energies of different configurations can be used to determine their
relative probabilities.

In the discrete MC model, a surface atom is removed if a random number drawn from
the interval [0, 1] is smaller than the relative removal probability. A single timestep of the
evolution of the surface with N atoms is obtained after having tried N local updates (some
of which have succeeded). After a successful local trial, the surface atom is removed and the
state of the neighbourhood is updated. In the continuous MC scheme, a continuous variable
ranging from unity to zero is used to characterize the occupation of each atomic site in the
system. When a surface atom is chosen (at random), this continuous variable is reduced by an
amount corresponding to the relative removal probability. When the continuous occupation
variable eventually reaches the minimum value of zero, the atom is definitely removed. As
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microscopic fluctuations of the system are suppressed, the continuous MC scheme starts to
reflect the asymptotic macroscopic morphology of the evolving system with smaller system
sizes than its discrete counterpart [22].

When considering the removal probabilities of surface atoms, it is necessary to consider
local neighbourhoods which contain both nearest and next-nearest atoms. Let us assume that
the dangling bonds of all surface atoms are terminated by either hydrogen or OH groups from
the etching solution. DFT calculations show that this leads to weakening of the backbonds,
arising from the electronegative pull exerted by the oxygen atom of the OH radical on the
bonding electrons. As a result of this weakening, the probability of breaking a given bond
depends on the number of OH groups attached to each of the atoms sharing that bond. For
the diamond structure of silicon, there are 32 possible different configurations for a surface
atom (19 configurations for an atom with three first neighbours, nine for an atom with two
first neighbours and three for an atom with one first neighbour). These 32 cases correspond to
eight different bond types. DFT cluster calculations are then carried out to obtain the removal
energies for the different cases.

While the bond-breaking model outline above contains the effect of second neighbours,
a detailed analysis shows that one also needs to distinguish between direct and indirect next-
nearest neighbours. A direct second neighbour is linked to the target atom directly through a
first neighbour, while an indirect second neighbour is linked through an indirect, longer path.
Calculations for clusters with different numbers of indirect second neighbours show important
differences. If the same bonds are broken upon removing a surface atom, the required energy
is different when indirect second neighbours are present. It costs more energy to add an OH
group to a silicon site with indirect neighbours. This leads to a reduced removal probability
when compared with the case with no indirect neighbours.

The probability of removal of a surface atom is given by the modified Arrhenius expression

p = exp

(
−�E

kBT

)
(6)

where �E is defined as the excess of average bond energy Ē over a critical energy Ec:

�E = kBT ln(1 + e(Ē−Ec)/kBT ). (7)

The critical energyEc acts as a threshold below which bond breaking and removal occurs with
essentially unit probability. The average energy per bond Ē is obtained from DFT calculations
for the possible geometries with varying numbers of first and second (direct and indirect)
neighbours.

Figure 1 shows the simulated ‘wagon-wheel’ pattern frequently used in studies of
anisotropic etching, compared with the experimental mesoscale pattern (a). The system under
investigation is the Si(100) wafer exposed to 10 wt% KOH solution at 75 ◦C. The comparison
clearly shows the importance of indirect surface–atom interactions (c), and also demonstrates in
a convincing way the power of modelling to draw a link between microscopic surface reactions
and emerging, meso- and macroscale morphology.

4. Irradiation processing of fullerenes and carbon onions

The properties of carbon allotropes with various closed cage structures have been an active
subject of research since the experimental discovery of fullerenes and nanotubes. The struc-
ture and energetics of fullerene spheres, tubes and nested forms known as carbon onions have
been studied theoretically with a multitude of methods, including density-functional, Hartree–
Fock and semi-empirical calculations of their electronic properties. Processing experiments
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Figure 1. Etching morphology using a ‘wagon-wheel’ pattern on an Si(100) wafer. (a) The
experimental result. (b) A combined microscopic (DFT)–macroscopic (MC) simulation, where the
probabilities of bond breaking are calculated for each possible environment. (c) The results of the
simulation where the indirect second-neighbour interactions have also been included. The angular
distance between the spokes is 5◦ in the experiment and 3◦ in the simulations; for more details,
see [22].

with high-energy electron and ion beams have shown that heavy-ion or electron irradiation
induces the nucleation of small diamond crystallites inside concentric nested carbon fullerenes,
‘bucky onions’.
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The concentric shells may be viewed as nanoscopic pressure cells for the nucleation of
diamond. Irradiating particles knock out carbon atoms from the shells, which leads to their
contraction and increase of pressure towards the onion core. The interstitials catalyse sp3

cross-links between atoms on neighbouring shells, which eventually leads to the formation of
small diamond crystallites. These crystallites grow under continuing irradiation and consume
the graphitic onions.

Recent computer simulations [23] have shed additional light on the atomistic nucleation
and growth processes of tetrahedrally bonded carbon clusters inside fullerenes. The simulations
use the density-functional-based tight-binding method [11]. This method, which contains
the crucial features of quantum mechanical bonding between covalent atoms, has been
successfully applied in studies of hydrocarbon molecules, carbon clusters and fullerenes as
well as amorphous and crystalline carbon. The nucleation of diamond in a small, two-shell
carbon onion with 300 atoms is studied with explicit molecular dynamics simulations. This
low-energy allotrope is a likely core of real giant fullerenes. The simulations model the release
of carbon atoms in knock-on displacements in outer shells and their transport to this core by
a sequence of random atom additions with low initial velocities. The structural evolution
during the injection of additional interstitial atoms is examined by a combination of molecular
dynamics and quasistatic (conjugate-gradient) structural optimization.

The simulations support the general picture of diamond nucleation during irradiation.
The results show that there is a critical size for arrangements of displaced atoms, below which
threefold-coordinated atoms dominate but above which diamond-like-coordinated clusters can
bond into completely fourfold-coordinated structures. The confinement due to the multilayer
carbon fullerene appears to lower this limit and reduce the tendency of sp3-coordinated atoms
to relax back into graphitic form. The nucleation in the fullerene core involves a transition
of quasi-two-dimensional curved shell structures into denser three-dimensional diamond-like
structures. The simulations show that this process requires rapid energy input by incoming
particles but also fast dissipation to the surroundings. One observes a transformation which
can be best described as ‘percolation’, when initially dispersed sp3-bonded regions fuse into
one sp3 cluster.

The simulations provide atomic-scale details of the rapid nucleation process inside carbon
fullerenes under particle irradiation. On a more macroscopic level, Zaiser and Banhart [24]
have presented a thermodynamical quasiequilibrium theory to explain the irradiation-induced
transformation from graphite to diamond across an arbitrary interface (i.e. not necessarily a
spherical graphene shell). The fact that the threshold energy for atomic displacements Td is
much larger in diamond (∼30 eV) than in graphite (∼15 eV) leads to the irradiation-induced
reversal of phase stability, i.e. favours the growth of diamond at the expense of graphite.

5. Oxygen in silicon

Czochralski-grown ultrapure silicon is the basic material of microelectronics. It contains a
small but unavoidable amount (typically 1018 atoms cm−3) of oxygen atoms dissolved into
the silicon melt from the quartz crucible during the growth process. After crystallization,
this oxygen remains as a supersaturated and inhomogeneously distributed impurity in the
lattice. Heat treatments are used to homogenize the oxygen distribution. The thermal
treatments involve a large number of diffusion-controlled processes associated with oxygen
migration, aggregation and dissociation. Oxygen complexes of varying size are known to
exist. At elevated temperatures the oxygen complexes dissociate and the concentration of
single interstitial oxygens (Oi) dominates in the cooled-down sample. Upon further treatment,
at temperatures above 350 ◦C, oxygen atoms begin to diffuse and form clusters which exhibit
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donor character. Initially, single Ois bind together to form interstitial dimers O2i . Further
migration and clustering takes place, which leads to the appearance of several families of
thermal double donors (TDDs). The microscopic identification of these defects has proven
quite difficult despite considerable experimental and theoretical effort.

We have recently undertaken a comprehensive computational study of oxygen-related
defects and their kinetics in Si [25]. By using accurate density-functional methods we
first obtain the ground-state structures for several oxygen complexes, ranging from single
interstitials to clusters with more than ten oxygen atoms. For these optimal structures, we
also evaluate their stable (and metastable) electronic configurations as a function of the host
electron chemical potential. When the electron Fermi level moves in the semiconducting gap
(due to background doping and/or temperature), the localized electronic states associated with
the oxygen complex are occupied. Consequently, the complex can appear in several charge
states, which have different ground-state structures. The positions of the chemical potential
where the lowest-total-energy charge state changes from one to another are called ionization
levels. Sometimes the stable charge state may change by more than one unit as a function
of the chemical potential. This signals the so-called negative-effective-U effect, where the
defect level traps two electrons rather than one; the Coulomb repulsion (U ) between the
localized electrons is more than compensated by the energy lowering associated with lattice
relaxation around the complex. A given complex may also exhibit metastability, which is
another consequence of the strong coupling between electronic and ionic (nuclear) degrees of
freedom. A metastable defect has another (deeper) energy minimum with a different set of
atomic coordinates, reachable by overcoming an activation barrier. The two states may also
have different electron counts (charges) for a fixed value of the electron chemical potential:
they form a bistable form of the defect complex, with different electrical activities. Transitions
between the bistable minima can be triggered by e.g. photon excitation or thermal treatment,
with important consequences such as persistent photoconductivity.

An important fingerprint for the various oxygen complexes is their local vibrational
modes, which can be experimentally studied by infrared (IR) absorption spectroscopy. The
density-functional calculations offer the possibility to calculate the local vibrational modes
as well, either through the diagonalization of the dynamical matrix (within the harmonic
approximation) or through the Fourier transform of the velocity autocorrelation function
obtained through first-principles molecular dynamics simulation.

After establishing the accuracy of the calculations for the structures and vibrational modes
of oxygen interstitials and dimers, we obtain a general picture for larger oxygen clusters, which
give rise to the primary TDD family. The first three TDDs (TDD0–TDD2) consist of one four-
member ring structure where two O atoms are bonded to two common Si atoms. This forms the
‘core’ of the TDDs, to which flanking bond-centre one or more interstitial O atoms are added.
The threefold-coordinated oxygen atom is the source of the donor character. The early TDDs
exhibit bistability as they have electrically neutral counterparts, the so-called X states. The
calculations provide a natural explanation for theX states. They are simple chains of staggered
O interstitials, without the ring structure. The higher TDDs (TDD3–TDD12) consist of similar
oxygen–silicon chain–ring structures, with flanking Ois. These structural models also give a
consistent explanation of the experimentally known decrease of the double-donor activation
energy for the higher TDDs, as well as of their vibrational modes.

The first-principles calculations have also been extended to obtain the association,
migration, restructuring and dissociation energies for a number of oxygen chains. It is
remarkable that the chains can have very low effective migration energies for their concerted
motion. For example, the oxygen dimer O2i has a barrier of 0.98 eV when it moves via the
intermediate four-membered ring (O2r ) configuration, to be compared against the migration
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Figure 2. Structures and diffusion landscape of the four-oxygen chain O4 along the [110] direction
in crystalline Si. (a) The staggered, electrically inert configuration. (b) The TDD1 structure with
electrically active, threefold-coordinated oxygen. (c) The structure of O4 at the reconfiguration
barrier. (d) The TDD2 structure. (e) The intermediate O2r–O2i (TDD1) configuration. (f) The
final, staggered O4i . The lower panel shows the total energy of the chain as a function of the reaction
coordinate. A, B, C and D correspond to the structures (a), (b), (c) and (d), respectively. The top
(bottom) curve is calculated for heavily n-type (p-type) materials. The middle curve corresponds
to semi-insulating material. The red and blue balls denote oxygen and silicon atoms, respectively,
and the black dots denote the ideal silicon crystal lattice sites. For more details, see [25].

barrier of 2.3 eV calculated for a single oxygen interstitial. Trimers and quadrimers have even
lower barriers (0.6–0.7 eV). Thus not only dimers but larger oxygen complexes (the TDDs) are
fast diffusers in silicon, which provides a new starting point for the explanation of the complex
annealing kinetics of oxygen in crystalline Si. An example of the chain structure and diffusion
path is shown in figure 2 for the four-oxygen cluster O4.

The calculated energy parameters have been used in a general rate-equation model for the
kinetics of oxygen in silicon. The model is based on the theory of diffusion-limited reactions,
and includes all the possible association and dissociation reactions between oxygen complexes,
as well as the isomerization and restructuring processes of single complexes. The rate equations
have the form

d[Oi]

dt
= −

∑
j

Jij +
∑
j

Kij + F [Oi] (8)
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where [Oi] denotes the concentration of a chain with j oxygen atoms with a given ground-state
structure. Kij is the rate for two migrating complexes Oi and Oj to merge into Oi+j

Kij = 4πr0(Di + Dj)[Oi][Ok] (9)

whereDj is the diffusivity of the chain and r0 is the capture radius for the association reaction.
The diffusivities are

Di = Di0 exp −
(
Em
i

kBT

)
(10)

whereDi0 is a pre-exponential factor andEm
i the migration energy for the process in question.

The dissociation rate in equation (8) is

Jij = Ar−2
0 (Di + Dj) exp −

(
Eij

kBT

)
[Oi+j ] (11)

where A is a dimensionless factor and Eb
jk the binding energy of the cluster Oj+k against

dissociation into clusters Oj and Ok . Since the formation energies (and also the migration
energies) of straight chains are lower than those of the less symmetric complexes, substantial
isomerization of the latter into straight chains occurs. The isomerization rate is

F [Oi] = ν exp −
(
�E

kBT

)
[Oi] (12)

where ν is a frequency factor and Ea the activation energy for the restructuring process. The
energy parameters, including the migration barriers, depend on the value of the electron chem-
ical potential, which in turn depends on both temperature and the number of activated donors.
The temperature dependence of the processes (migration, dissociation, restructuring) is totally
dominated by the Boltzmann factors with energy parameters obtained from first principles.
The prefactors Ar−2

0 , Di0 and ν were obtained by fitting the concentration [O2] of dimers to
the experimental [26] concentration of the 1013 cm−1 vibrational band at 350 and 420 ◦C.

Figure 3 displays calculated results for the oxygen-related TDD kinetics as compared
with experimental annealing curves. Figure 3(a) shows the temperature dependence of the
total formation rate of all TDDs and the corresponding loss of interstitial Oi in n-type Si. The
initial oxygen concentration is [Oi] = 1.0 × 1018 cm−3. Figure 3(b) shows the simulated
annealing behaviour of the shortest oxygen chains (TDDs) in n-type silicon when the initial
oxygen concentration is 8 × 1017 cm−3. O2 and O3 denote electrically inactive (staggered-
structured) oxygen chains with two and three atoms, respectively. The solid curves show the
simulated results and the symbols denote experimental results [26] for local-vibrational-mode
(LVM) spectroscopy of oxygen in Si. The vibrational spectra can be uniquely associated with
the calculated structures and excitations. The kinetic simulations, built on microscopic cal-
culations for the donor structures, vibrations, dissociation/association and diffusion energies,
provide a consistent picture of the observed macroscopic annealing behaviour.

6. Self-diffusion in GaSb

Diffusion of host and impurity atoms in semiconductors is a crucial ingredient in several
stages of the processing of device structures. For example, dopant atom profiles are sensitive
to thermal treatments following implantation. The annealing influences the diffusive motion
of atoms, which also depends strongly on the presence of lattice defects and impurity–defect
complexes.

The recent experiments by Bracht et al [27] for the compound semiconductor GaSb have
demonstrated that Ga atoms self-diffuse several orders of magnitude faster than Sb atoms.
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Figure 3. (a) The calculated temperature dependence of the total formation rate of TDDs and the
corresponding loss rate of interstitial oxygen Oi during thermal treatment. The material is n-type
Si with the initial oxygen concentration [Oi ] = 1.0 × 1018 cm−3. (b) The simulated annealing
behaviour of the first oxygen chains (TDDs) in Si at 420 ◦C. O2 and O3 denote the electrically
inactive chains with two and three oxygens, respectively. The initial oxygen concentration is
[Oi ] = 8.0 × 1017 cm−3. The solid curves denote the simulated results and the symbols the
experimental vibrational-spectroscopy data from [26]; for more details, see [25].

This result suggests that diffusion takes place rather independently in the two sublattices of the
zincblende structure, and that the concentration differences of the native defects responsible for
the sublattice diffusion are remarkably different. The possibility arises that the concentrations
are strongly affected by amphoteric transformations between the defect types. Since defects
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may possess several stable charge states, the energetics of the reactions may depend sensitively
on the Fermi level position, i.e. doping of the semiconductor.

Electronic structure calculations can reveal the microscopic origin of the observed huge
asymmetry in the self-diffusion coefficient. We have recently performed such calculations [28]
for fully relaxed vacancies, interstitials and antisites in GaSb and estimated the native defect
concentrations at typical temperatures for semiconductor growth and processing.

The structures and total energies of native defects in GaSb are calculated using DFT–LDA,
as implemented through norm-conserving pseudopotentials and the plane-wave basis set. The
formation energies for defects in different charge states and for different values of the material
stoichiometry are calculated as

Ef = ED + q(µe + Ev)− nGaµGa − nSbµSb (13)

where ED is the total energy of the supercell containing the defect in question, q is the charge
of the defect, µe the value of the chemical potential (Fermi level position) and Ev the energy
of the valence band maximum, which also serves as the reference value for µe. nGa and nSb

are the numbers of gallium and antimony atoms in the supercell, and µGa and µSb the atomic
chemical potentials, respectively. The ionization levels (q/q ′) for a given defect are defined as
the positions of the Fermi level µe where the charge state corresponding to the lowest energy
changes from q to q ′ with increasing µe.

As-grown GaSb is always p type, irrespective of growth techniques and conditions. This
is naturally explained by the calculations, which show a low formation energy (and thus a high
equilibrium concentration) for the gallium antisite GaSb. This defect is a double acceptor. The
calculated hole concentration agrees well with experimental observations. In Ga-rich growth
conditions the antisite GaSb concentration pulls the Fermi level down from its intrinsic value.
For Ga-rich material, the other important native defect is the Ga interstitial Gai , which is
positively charged.

For Sb-rich conditions the important defects are the gallium vacancyVGa and the antimony
antisite SbGa. The gallium vacancy is a triple acceptor and is abundant. The anion antisite SbGa

has a metastable configuration when the Sb atom is displaced along the [111] direction, quite
similarly to the metastability of several anion antisite defects in GaAs. However, there are no
electrically active levels associated with SbGa. This is in important contrast to the GaAs, where
the anion antisite AsGa with its deep donor levels is responsible for the Fermi level pinning
in the middle of the gap, as the microscopic model for the ‘EL2’ defect responsible for the
semi-insulating property of as-grown GaAs. The arsenic antisite is also an important defect in
GaAs thin films grown at low temperature [29].

The calculations also provide an explanation of the observed self-diffusion asymmetry.
The vacancy mechanism for self-diffusion in a compound material consists of successive atomic
movements to the vacant site, either from the nearest-neighbour or next-nearest-neighbour
position. The relevant nearest-neighbour steps are

VGa ↔ VSbSbGa (14)

VSb ↔ VGaGaSb. (15)

In the first reaction, VGa can exist in negative charge states while for the complex VSbSbGa only
the positive (1+) charge state is stable (and the neutral state metastable). The reaction (14)
is therefore endothermic and requires electron transfer. The second reaction (15) is, by
contrast, exothermic for all Fermi level positions. While the complex VGaGaSb is stable (unlike
its counterpart in GaAs) and thus a possible diffusion intermediate, the strong asymmetry
between the reaction energies for equations (14) and (15) suggests the nearest-neighbour
mechanism.
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In the nearest-neighbour mechanism the Ga and Sb atoms diffuse independently of each
other via either vacancies or interstitials. The diffusion coefficient for either atom can be
written with the help of the concentrations CV and CI (vacancies and interstitials) of the
defects mediating the diffusion

Dself = dV CV + dICI . (16)

The diffusivities dV,I contain the factors related to migration (the Boltzmann factor for the
migration barrier and the entropic prefactor). The concentrations can be estimated from the total
energies for defects in various charge states and under different stoichiometries. The results
show a large concentration of both Ga vacancies and interstitials, while the concentration
of Sb vacancies is expected to be very low. VSb undergoes an amphoteric transformation
to a gallium vacancy–gallium antisite complex. The complex may dissociate (more easily
in n-type material) and supply extra gallium vacancies and antisites. Thus the observation of
Bracht et al [27] for Ga-dominated diffusion can be understood by the significant concentration
differences of native defects in the two sublattices. However, it seems that the diffusion may
not be described by the (sublattice) vacancy mechanism alone, since the relative concentrations
of interstitials are also non-negligible.

7. Summary and conclusions

This paper has discussed some current trends in computational materials science. This
field is undergoing a phase of rapid progress, as increasingly complex problems associated
with real materials and their processing can be addressed. This progress naturally builds
on the solid foundation of condensed matter physics, especially as regards the atom-scale
phenomena. While the conceptual basis for many physico-chemical properties is well
understood, condensed-matter research continues to provide surprises and new theoretical
challenges in its less charted areas. Examples of the latter include exotic superconductors and
correlated electronic phases in low-dimensional systems. However, there is ample reason to
believe that the gamut of materials phenomena which succumb to quantitative modelling by
numerical techniques will continue to grow.

In computational materials science, powerful techniques such those based on DFT and
on molecular-dynamics simulations are now used to attack problems which most researchers
would not have even considered just a decade ago. These include free-energy calculations at
finite temperatures, noncollinear magnetic structures, extended defects such as dislocations
and grain boundaries, and even systems far away from equilibrium. The modelling is not
only qualitative but also quantitative. This is important, as for many scientifically and
technologically important questions in materials, ‘the devil is in the detail’.

The progress naturally owes a lot to the rapidly improved access to unprecedented
computing power at affordable costs. Materials modelling has been one of the scientific
beneficiaries of Moore’s law, and it is perhaps gratifying to think that advances in computational
materials science are paying back to microelectronics and computer engineering, as new
materials and structures help to design faster and cheaper processors and memories.

Another important contributor to the progress is new algorithms and computational
methods applied in solving the relevant equations, ranging from iterative matrix
diagonalizations to novel MC tricks. Many of these algorithms draw their inspiration from
the physical world. Simulated annealing, genetic algorithms and lattice-gas automata are
typical examples of such algorithms, which also find many applications outside physical
sciences. Again, one can think of this as a payback from computational physics to ‘physical
computing’.
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A number of examples of materials simulation have been briefly described in this
article. These examples, which have been chose to illustrate the multiscale, multifaceted
nature of the field, come from the work carried out at the Laboratory of Physics at HUT.
They constitute just a tiny and not necessarily representative sample of the widespread
activities in computational materials science. The interested reader is referred to the rapidly
growing scientific literature as well as to descriptions of large research initiatives in the
area.
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